Piston variations

- Oros type
- Conventional type
- Bore cooled
- Standard cooled
- High topland
- Low topland
- Inconel on top
- Without Inconel on top
- Fully cast
- Cast/welded
- Forged/welded
- Configuration of ring grooves:
 - Four small
 - One big, three small
 - Two small, two big

Ordering non-genuine components increases the risk of receiving incorrect supplies.

For genuine, fully guaranteed parts, contact:

Man Diesel PrimeServ Copenhagen
or
the engine builder
Piston ring groove development

Present standard:
1. Ring groove high.
2.3.4 Ring grooves low.

Second standard:
1.2. Ring grooves high.
3.4. Ring grooves low.

First standard:
1.2.3.4. Ring grooves low.
Original design

Expected lifetime: 80,000 hours

MD-C produced crown

Always made according to the latest design (Oros).

Oros type is a multi-bore cooled piston with high topland giving improved combustion and approx 100 degrees C lower temperature on the top.

Produced with increased chrome layer 0.5mm on bottom surface of ring grooves (SL 02-404).
MD-C supply

- Ensures the correct topland.
- Ensures the correct ring configuration.
- Ensures the correct ring material for the original cylinder liner.

100% Load Piston crown temperature
Piston Crown
90MC/MC-C , 80MC/MC-C

Original design
Expected life time: 90MC/MC-C 80,000 hours
Expected life time: 80MC/MC-C 70,000 hours.

MD-C produced piston
Always produced according to latest design (Oros, Conventionel).

Oros type is multi-bored cooled piston with high topland given an improved combustion and approx 100 degrees C lower temperature on the top.
MD-C produced piston

Conventional type with high and low topland and 8 mm Inconel on the top, multi-bore or standard cooled.

Produced with increased chrome layer 0,5 mm on the bottom of the ring grooves (SL 02.404).

MD-C supply

- Ensure the correct topland.
- Ensure the correct ring configuration.
- Ensure the correct ring material for the original cylinder liner.
Original design
Expected lifetime 70,000 hours.

MD-C produced piston
Always made according to the latest design (Oros, conventional).

Oros type is a multi-bored cooled piston with high topland giving improved combustion and approx 100 degrees C lower temperature on the top.

Conventional type with high and low topland with and without 8 mm inconel on the top, depending on the type of engine and bore-cooled/standard cooled.

Produced with increased chrome layer 0.5mm on bottom surface of ring grooves (SL02-404).
MD-C supply

- Ensures the correct topland.
- Ensures the correct top surface with or without Inconel layer.
- Ensures the correct ring configuration.
- Ensures the correct ring material for the original cylinder liner.
Original design
Expected lifetime 60,000 hours.

MD-C produced piston
Always made according to latest design.
Produced with high and low topland; bore-cooled and standard cooled.
Produced with increased chrome layer at bottom of ring groove 0.5 mm (SL02-404).
MD-C supply

- Ensures the correct topland.
- Ensures the correct ring configuration.
- Ensures the correct ring material for the correct cylinder liner.
Original design
Expected lifetime 50,000 hours

MD-C produced piston
Always made according to latest design.
Produced with high and low topland.
Produced with increased chrome layer at bottom of ring grooves 0.5mm (SL 02-404).

MD-C supply
- Ensures the correct topland.
- Ensures the correct ring configuration.
- Ensures the correct ring material for the original cylinder.
Piston Crown
26MC

Original design
Expected lifetime 40,000 hours

MD-C produced piston
Always made according to latest design.
Produced with high and low topland.
Produced with increased chrome layer at bottom of ring grooves 0.5mm (SL 02-404).

MD-C supply
• Ensures the correct topland.
• Ensures the correct configuration.
• Ensures the correct material for the original cylinder liner.
Increase of Chrome Layer Thickness
Action Code: WHEN CONVENIENT

Dear Sirs

This Service Letter is only valid for engines which have pistons on which the uppermost or the two uppermost ring grooves are higher than the rest.

Progress in chrome plating technology has made it possible to increase the plating thickness in the ring grooves of the pistons, without sacrificing the hardness or incurring too high extra costs.

The useful life of a piston crown depends, in many cases, on the wear in the ring grooves. Therefore, we have taken advantage of the improved plating technology to increase the plating thickness in the grooves of the piston crowns from 0.3 mm to 0.5 mm on engine types utilising “high” piston rings.

Since, the wear limit of the ring grooves corresponds to the plating thickness, the acceptable wear will be increased from 0.3 mm to 0.5 mm.

Our authorised repair shops have been instructed to increase the plating thickness to 0.5 mm in the grooves when reconditioning piston crowns of the types concerned.

We wish to draw your attention to the fact that piston crowns which were originally produced with a 0.3 mm plating will be returned from reconditioning with a 0.5 mm plating; thus the wear limit of the reconditioned units is increased to 0.5 mm. The clearance in the ring groove will remain unchanged.
General comments on reconditioning

We find it is practical to divide the reconditioning of piston crowns into the following two types of jobs:

1. “Small jobs” affecting only the chrome plating in the ring grooves.

2. “Big jobs” where the base metal of the piston crown must be rebuilt by welding before chrome plating.

It goes without saying that the expenses for reconditioning a piston crown increase substantially if the ring groove is worn through the chrome plating. In that case the groove will most frequently have to be rebuilt by welding, making full reconditioning necessary.

Questions or comments regarding this SL should be directed to our Dept. 2300.

Yours faithfully

MAN B&W Diesel A/S

Carl-Erik Egeberg Mikael C Jensen
Original design

Expected lifetime 12-16,000 hours

Based on ring pack equipped with:

Upper ring designed with controlled pressure relief *(CPR) alu-coated chrome.

The remaining rings are alu-coated.

Genuine spare part

- Alu-coated piston ring, developed at our Research Centre
- Reduced running-in time with more than 50%
- Saving cylinder oil
- Thickness about 0.3 mm
MD-C supply

Always supplied according to latest design.

Upper ring: Height reduced by 0.1mm (reduced risk of sticking).

Position of relief grooves has been modified (grooves moved away from the stress area).

Ensures the correct ring configuration.

Ensures the correct ring material for the original cylinder liner.

*CPR ring ensures:

- Improved pressure drop across ring pack.
- Reduced heat load on second piston ring
- Longer lifetime of ring pack.
Original design

Expected lifetime 12-16,000 hours

Cylinder liner equipped with PC ring

Based on ring pack equipped with:

Upper ring produced with controlled pressure relief *(CPR) alu-coated chrome/alu coated.

The rest of the rings are alu-coated.

Alternative:

The whole ring pack is taper faced with/without CPR and without alu-coating.

Price-wise cheaper but without the same expected lifetime.
MD-C supply

Always supplied according to latest design.

Upper ring: Height reduced by 0.1mm (Reduced risk of sticking).

Position of relief grooves has been modified. (grooves moved away from stress area).

Ensures the correct ring configuration.

Ensures the correct ring material for the original cylinder liner.

*CPR ring ensures:

- Improved pressure drop across the ring pack.
- Reduced heat load on second piston ring.
- Longer lifetime of ring pack.
Original design

Expected lifetime 12-16,000 hours

Cylinder liner equipped with PC ring

Based on ring pack is equipped with:

Upper ring produced with controlled pressure relief *(CPR) alu-coated.

The rest of the rings are alu-coated.

Alternative:

The whole ring pack is taper faced with/without CPR and without alu-coat.

Price-wise cheaper but without the same expected life-time.
MD-C supply

Always supplied according to latest design.

Upper ring: Height reduced by 0.1mm. (Reduced risk of sticking).

Position of relief grooves has been modified (grooves moved away from the stress area).

Ensures the correct ring configuration.

Ensures the correct ring material for the original cylinder liner.

*CPR ring ensures:

- Improved pressure drop across the ring pack.
- Reduced heat load on second piston ring.
- Longer lifetime of ring pack.
Ring pack – When the liner is equipped with PC ring

For L/K90MC, K80MC
See special plate

- High topland piston crown
- 1st piston ring with increased height
- Copper band on piston skirt
The stated type of engines are sensitive for coke formations and thereby for scuffing.

The guide line for the ring pack is following:

Ring pack with CPR ring and liner **with** PC ring.

1st ring: CPR with alu-coat.
2nd ring: RM5 with alu-coat
3rd ring: RM5 with alu-coat
4th ring: RM5 with alu-coat

Ring pack with CPR ring and liner **without** PC ring.

1st ring: CPR with PM14
2nd ring: RM5 with alu-coat
3rd ring: RM5 with alu-coat
4th ring: RM5 with alu-coat

UBP 03/05-05
Piston Rings for MC Engines

- Upper piston ring with double-lap S-seal and 6 Controlled Pressure Relief (CPR) gaps
- Even heat distribution on 2nd piston ring
- 2nd, 3rd and 4th piston rings with oblique cut ring gaps
- New piston ring material: RVK-C for 70-26 cm bores and RVK-C with Alu-coating on 98-80 cm bores

When the liner is equipped with PC ring
MAN Diesel standard piston rings and their compatibility with different kinds of cylinder liner materials

<table>
<thead>
<tr>
<th>Ring No.</th>
<th>CPR, high</th>
<th>RVK-C with Alu-coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring No. 1</td>
<td>CPR, high</td>
<td>RVK-C with Alucoating</td>
</tr>
<tr>
<td>Ring No. 2</td>
<td>Low, left cut</td>
<td>RM5 with Alucoating</td>
</tr>
<tr>
<td>Ring No. 3</td>
<td>Low, right cut</td>
<td>RM5 with Alucoating</td>
</tr>
<tr>
<td>Ring No. 4</td>
<td>Low, left cut</td>
<td>RM5 with Alucoating</td>
</tr>
</tbody>
</table>

Other combinations of piston ring/cylinder liner materials can lead to increased wear of either the piston rings or the cylinder liners.

*RM4 piston ring has in special cases been used successfully in Tarkalloy C-Va cylinder liner.

For the existing engines without a PC ring, the top ring of RVK-C with PM 14 (relatively hard material) coating is still necessary.
Man Diesel standard piston rings and their compatibility with different kinds of cylinder liner materials.

<table>
<thead>
<tr>
<th>Ring No.</th>
<th>Cylinder Type</th>
<th>Standard</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>CPR, high</td>
<td>RVK-C</td>
<td>Alu-coating</td>
</tr>
<tr>
<td>No. 2</td>
<td>Low, left cut</td>
<td>RM5</td>
<td>Alu-coating</td>
</tr>
<tr>
<td>No. 3</td>
<td>Low, right cut</td>
<td>RM5</td>
<td>Alu-coating</td>
</tr>
<tr>
<td>No. 4</td>
<td>Low, left cut</td>
<td>RM5</td>
<td>Alu-coating</td>
</tr>
</tbody>
</table>

RM4 piston ring has in special cases been used successfully in C-Va cylinder liner.

Other combinations of piston ring/cylinder liner materials can lead to increased wear of either the piston rings or the cylinder liners.
Cylinder liner and piston ring wear highly depends on the compatibility between the cylinder liner and the piston ring material.

<table>
<thead>
<tr>
<th>Daros</th>
<th>Nippon</th>
<th>Riken</th>
<th>Properties</th>
<th>Cylinder liner material</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM 5</td>
<td>Uballoy</td>
<td>Rik 45</td>
<td>Grey cast iron</td>
<td>Tarkalloy</td>
</tr>
<tr>
<td>RM 5</td>
<td>NPR Uballoy S</td>
<td>Rik 47</td>
<td>Copper-molybdenum alloyed, flake graphite</td>
<td>Tarkalloy</td>
</tr>
<tr>
<td>RM 4</td>
<td></td>
<td></td>
<td>Vanadium and copper molybdenum alloyed, flake graphite</td>
<td>PVA *(Tarkalloy C)</td>
</tr>
<tr>
<td>RVK-C</td>
<td>Tarkalloy G</td>
<td>Rik 29</td>
<td>Alloeyed high strength CV graphite iron</td>
<td>Tarkalloy C/A</td>
</tr>
<tr>
<td>RVK/pm 14</td>
<td></td>
<td></td>
<td>Base material RKV with ceramic coating on the running surface</td>
<td>All</td>
</tr>
<tr>
<td>RVK-C</td>
<td>Tarkalloy G</td>
<td>Rik 29V</td>
<td>Alloeyed high strength CV graphite iron with wear reducing carbides</td>
<td>Tarkalloy C/A</td>
</tr>
<tr>
<td>RVK-C/Alu-bronze</td>
<td>Tarkalloy G/ Alu-bronze</td>
<td>Rik29V/ Alu-bronze</td>
<td>Alloeyed high strength CV graphite iron, with wear reducing coating</td>
<td>All</td>
</tr>
</tbody>
</table>

CV : Compact vermicular iron

Please view page 2 for further remarks
CPR Piston Ring Development

Original location of grooves (6 CL-grooves)

6 relocated CL-grooves (E-Type from Jan. 2002)

Width of CL-groove: 2mm

4 relocated CL-grooves (E4-Type)

Width of CL-groove: 3mm

Width of CL-groove: 2mm
Essential Problems in the Last Decade and Their Solutions

Problems

- Short time between overhauls and high wear rates for liners and piston rings
- Excessive corrosion in the lower part of the liners
- Main bearing damage on thick shell bearings
- Too high rpm at slow steaming

Solutions

- Introduction of CPR top rings and high topland piston
- Decreased cooling of cylinder liners and introduction of PC-ring
- Modification of bearings design
- Alignment instructions and offset bearings
- Introduction of thin shell bearings
- Flex Type introduced
- Cylinder cut-out
Essential Problems in the Last Decade and Their Solutions

Problems
- Cracked cylinder liners with cast in cooling pipes
- Broken or collapsed piston rings
- Scuffing between liner and piston rings
- Insufficient combustion
- High wear for piston ring grooves Large bore engines

Solutions
- Introduction of bore-cooled liners, low liners with optimized temperature level and higher cylinder cover
- One high upper ring, CPR top ring, high topland pistons
- Modification of ring design
- PC-ring in top of liner and alu-coated piston rings
- Improved water mist catcher
- Modified fuel valves
- Cylinder cut out
- Increased chrome thickness from 0.3 mm to 0.5 mm

Further improvements necessary
Cylinder Condition

Bad

7S80MC
Running hours: 5,098

Good

12K90MC-C
Running hours: 12,045
Design and Experience

7S80MC
M/T Vanadis

Cylinder unit No.4

Piston with CPR top ring
after 17,296 running hours without overhaul

CPR = Controlled Pressure Relief

Exhaust side
6L80MC

Damaged piston
Reason: fuel valves in bad condition
Cylinder Liner / Piston Cleaning Ring

- Cylinder cover
- Piston – high topland
- Piston cleaning ring
- Cylinder liner
Combustion Chamber
Large Bore Engines

Features:
- High topland
- Oros shape piston top
- CPR top ring
- Alu-coated piston rings
- Bore cooled, heat resistant steel forged piston
- Piston cleaning ring

Improvements:
- Approx. 100 °C lower temperature on top compared with former type piston
- Increased chrome layer thickness in bottom of ring grooves

Verification:
- Extensive calculations
- Comprehensive tests on K90MC, K90MC-C and K98MC
- Service test on K90MC
New material specification for piston rings supplied from MD-C

1) CV1 "C for Cast iron – V for Vermicularjern – 1 for identification" ex. RVK-C
2) CF4 "C for Cast iron – F for Flagegrafitjern – 4 for Identification" ex. RM4
3) CF5 "C for Cast iron – F for Flagegrafitjern – 5 for Identification" ex. RM5

Juni 2004